Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 97(2): 505-526, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34708504

RESUMO

Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.


Assuntos
Ecossistema , Répteis , Animais , Evolução Biológica , Ecologia , Comportamento Predatório/fisiologia , Sono
2.
Front Conserv Sci ; 32022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38558889

RESUMO

Urbanization results in complex and variable changes to environmental conditions, which translate to shifts in selection pressures for organisms. Size of a city as well as the intensity and extent of urbanization can synergistically influence how organisms are impacted. However, less is known about how landscape heterogeneity, rate of land-use change, and scale of urbanization affect species persistence. We evaluate the ways in which urbanization changes the environment and examine how some of these environmental factors influence the presence of the lizard Psammophilus dorsalis (Peninsular rock agama), in Bengaluru, India. Variability in environmental factors across the study area was characterised by measures of habitat composition and diversity, habitat connectivity, rate of habitat change, predation pressure, land surface temperature (LST) and artificial light at night (ALAN), that were derived from remotely sensed and citizen science data. Most of these factors showed high variance across two measures of urbanization: distance from city center and proportion of built-up area. Habitat diversity and ALAN were the only two factors that changed predictably and in a non-linear way, with distance from the city center and proportion of built-up area. We then used a multi-scale approach to examine the relative importance of some these environmental factors at the landscape scale, as well as additional factors at the microhabitat-scale, in predicting the presence and relative abundance of P. dorsalis respectively. At the landscape scale, LST, which is positively correlated with proportion of cropland, predicted lizard presence; whereas at the microhabitat scale, P. dorsalis was more likely to be found in sites with higher proportions of rocks. Overall, we demonstrate that urbanization can result in environmental predictors that do not vary linearly across the urbanization gradient. For the iconic rock agama, many of these environmental factors do not seem to be strong selection pressures that influence their distribution in the expanding cityscape. Whether this urban utilizer can continue to persist with increasing anthropogenic development is uncertain. To better understand drivers of species persistence, we emphasize the importance of quantifying urbanization across multiple axes, considering environmental factors that are relevant to species at different spatial and temporal scales.

3.
Biol Lett ; 16(11): 20200651, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33202183

RESUMO

Island ecosystems have traditionally been hailed as natural laboratories for examining phenotypic change, including dramatic shifts in body size. Similarly, biological invasions can drive rapid localized adaptations within modern timeframes. Here, we compare the morphology of two invasive guttural toad (Sclerophrys gutturalis) populations in Mauritius and Réunion with their source population from South Africa. We found that female toads on both islands were significantly smaller than mainland counterparts (33.9% and 25.9% reduction, respectively), as were males in Mauritius (22.4%). We also discovered a significant reduction in the relative hindlimb length of both sexes, on both islands, compared with mainland toads (ranging from 3.4 to 9.0%). If our findings are a result of natural selection, then this would suggest that the dramatic reshaping of an amphibian's morphology-leading to insular dwarfism-can result in less than 100 years; however, further research is required to elucidate the mechanism driving this change (e.g. heritable adaptation, phenotypic plasticity, or an interaction between them).


Assuntos
Nanismo , Ecossistema , Animais , Evolução Biológica , Bufonidae , Feminino , Masculino , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...